Spectral and Hodge Theory of ‘witt’ Incomplete Cusp Edge Spaces

نویسندگان

  • JESSE GELL-REDMAN
  • JAN SWOBODA
چکیده

Incomplete cusp edges model the behavior of the Weil-Petersson metric on the compactified Riemann moduli space near the interior of a divisor. Assuming such a space is Witt, we construct a fundamental solution to the heat equation, and using a precise description of its asymptotic behavior at the singular set, we prove that the Hodge-Laplacian on differential forms is essentially self-adjoint, with discrete spectrum satisfying Weyl asymptotics. We go on to prove bounds on the growth of L2-harmonic forms at the singular set and to prove a Hodge theorem, namely that the space of L2harmonic forms is naturally isomorphic to the middle-perversity intersection cohomology. Moreover, we develop an asymptotic expansion for the heat trace near t = 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A p-ADIC PROOF OF HODGE SYMMETRY FOR THREEFOLDS

The Hodge theorem also asserts that these two spaces are complex conjugates and hence the equality of the two dimensions. In this note we give a p-adic proof of (1.1) when X/C is a smooth projective threefold. Our approach is based on the following observation: one first notes a purely p-adic assertion that (1.1) holds when Hodge numbers are replaced by more delicate p-adic invariants introduce...

متن کامل

The Index of Dirac Operators on Incomplete Edge Spaces

We derive a formula for the index of a Dirac operator on an incomplete edge space satisfying a “geometric Witt condition.” We accomplish this by cutting off to a smooth manifold with boundary, applying the Atiyah-Patodi-Singer index theorem, and taking a limit. We deduce corollaries related to the existence of positive scalar curvature metrics on incomplete edge spaces.

متن کامل

The Index of Dirac Operators on Incomplete Edge Spaces

We derive a formula for the index of a Dirac operator on a compact, evendimensional incomplete edge space satisfying a “geometric Witt condition”. We accomplish this by cutting off to a smooth manifold with boundary, applying the Atiyah–Patodi–Singer index theorem, and taking a limit. We deduce corollaries related to the existence of positive scalar curvature metrics on incomplete edge spaces.

متن کامل

Hodge Cohomology of Some Foliated Boundary and Foliated Cusp Metrics

For fibred boundary and fibred cusp metrics, Hausel, Hunsicker, and Mazzeo identified the space of L harmonic forms of fixed degree with the images of maps between intersection cohomology groups of an associated stratified space obtained by collapsing the fibres of the fibration at infinity onto its base. In the present paper, we obtain a generalization of this result to situations where, rathe...

متن کامل

Applications of a Pre–trace Formula to Estimates on Maass Cusp Forms

By using spectral expansions in global automorphic Levi–Sobolev spaces, we estimate an average of the first Fourier coefficients of Maass cusp forms for SL2(Z), producing a soft estimate on the first numerical Fourier coefficients of Maass cusp forms, which is an example of a general technique for estimates on compact periods via application of a pre–trace formula. Incidentally, this shows that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015